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Quadratic Fields with Four Invariants Divisible by 3 

By Daniel Shanks and Richard Serafin 

Abstract. Imaginary quadratic fields are deVeloped that have four invariants divisible by 
3. Their associated real fields are found to differ in one significant respect: one case has two 
elementary generators and the other has only one. 

1. Series 6. The number of invariants of a quadratic field Q(d112) that are 
divisible by 3 equals the number of factors in the 3-Sylow subgroup of its class group. 
Following Scholz [1], we use r for this number if d < 0 and s if d > 0. The first case 
of r = 1 is Q((-23)1"2). This has C(3) as its class group. The first case [2] of r = 2 
is Q((- 3299)1/2) with C(9) X C(3). The smallest known case [3] of r = 3 is 
Q((- 63199139)1/2) with C(3) X C(3) X C(3) X C(1 16). These three discriminants 
are 

- D6(1), -D6(- 2), - D6(28), 

respectively, where 

(1) D6(z) = 108z4 - 148z3 + 84Z2 - 24z + 3. 

It was proven in [3] that r > 2 for all square-free discriminants - D6(z) with 
z- 1 (mod 3) except for the degenerate z = 1. It was also shown that r = 3 for 

(2) z = 28, - 29, 34, -41, - 44, 46, 

and while it was not proven that -D,6(z) yields infinitely many cases of r > 2, that 
seemed very probable. If one continues (2), one finds that r = 3 also for 

(2a) z = 79, - 92, - 122, - 125, 127, - 131, 148, - 164. 

Empirically, about 1/6 of all square-free D6(z) have r > 2 and it seemed plausible 
[3] that after a moderate number of such r > 2 were located, an example of r = 4 
would appear. But this was not pursued at the time. 

Recently, we learned from Professor D. J. Lewis that a doctoral student of his, 
Maurice Craig [4], had constructed a Q((-D)1/2) with r = 4. No details were con- 
veyed except that D is very large, of the order of 400 10100, and so it is not suitable 
for a detailed numerical examination. To prove the existence of an r = 4, only one 
case is needed, but, analytically speaking, some interest attaches to the size of the 
smallest such D. Thus, we could ask: How big must D be for the Diophantine equation 

(3) 4a3 = b2 + c2D 

to have 81 distinct solutions with 0 < a < (D/3)112, 0 < b, (b, c) < 2? Such solutions 
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correspond to ideals W = (a, (b + c(-D)1"2)/2) whose cube is principal: 

b + c(- D)l12) 
( 2 ) 

Since it appeared likely that a much smaller D could be obtained with D6(z), we 
therefore continued (2) and found that the next case after (2a) does have r = 4. 
This is 

(2b) D = D6(169) = 87386945207 = 167 12409-42169 

which has the class group 

(4) C(3) X C(3) X C(3) X C(3) X C(1448) X C(2). 

To verify that [C(3)]4 is a subgroup, it suffices to verify the 14 solutions of (3) in Table 1. 

TABLE 1 

a b c Structure 

113738 76715859 1 J 
6854 1095693 -1 K 

89158 40480625 117 J2K 
11904 2580707 1 J2K2 
22574 6776883 1 L 

106028 65782389 71 J2L 
164511 133418432 10 JL 
112456 2509283 255 K2L2 
73278 18341941 -119 KL2 
96774 20911027 -191 J2K2L2 
11321 459414 -8 JK2L2 
31972 8186767 -27 J2KL2 

131167 38385160 294 JKL2 
2802 24685 1 M 

These 14, together with their 14 inverses obtained by changing the sign of c, 
correspond to 28 ideals of order 3 and minimal norm a within their respective equiva- 
lence classes. Since the identity of a class group with r < 4 can have at most 27 such 
cube-roots, we must have r > 4. 

The entries J, K, L, M constitute four generators and the products of the first 
three make up the other rows in Table 1 and their inverses: J2, K2, JK2, etc. J is the 
"elementary explicit cube-root" [3] given by 

a = 4z2 _ 3z + 1, b = 16z3 - 18z2 + 6z - 1, c = 1. 

The remaining 26 values of a are obtained by taking all ideal products with M. They 
are, in order of size, 3378, 4208, ... , 156228. All 40 values of a are distinct. The 
four generators could have been selected in 24261120 ways; e.g., in place of the K 
and L shown we could have taken the smaller 3378 and 4208, both of which also 
have c = 1. 
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By Scholz's theorem [1] and Theorem 3 of [3], the real field Q(V\3D6(169)) will 
have s = 3. Its group is 

C(9) X C(3) X C(3) X C(16) X C(2). 

Since its class number h = 2592 is relatively large for a real field, its fundamental 
unit E = (T + U(3D)112)/2 is correspondingly not too large to be given exactly: 

(5) T = 9 6179600759 7355406365 7316493191 5352034585, 

U = 187844 7508730142 6405065469 7450227699. 

It is desirable to explain how the r = 4 here comes about. In [3], it is proven that 
r = s + 1 for -D6(z) and 3D,(z), z 1 (mod 3), and of the two solutions of 

3 2 2 4a = b 
- c23D 

given by 

(6a) a = 3z, b = 54Z2 - 36z + 9, c = 3, 

(6b) a = 3z - 2, b = 54Z2 36z + 7, c = 3, 

at least one corresponds to an ideal of order 3 in Q((3D)1t2). Then s = 2 and r = 3 
will occur if 

(1) both ideals (6a, b) are of order 3 and independent, or 
(2) a third ideal, independent of (6a) and (6b), is of order 3. 

Both possibilities happen. Then, as predicted in [5, p. 86], if both (1) and (2) occur 
we will have s = 3 and r = 4. This happens for z = 169 with the fourth power of a 
prime ideal of norm 5. The prime ideal is of order 12, and its fourth power is a third, 
independent generator. Owing to the size of E, its b and c are large: 

a = 625, 

(6c) b = 1228199422 5220152913, 

c = 2398 7499711333. 

Continuing D6(z) for a few more values of z (to comprise exactly 100 discriminants) 
yields two more examples of r = 3 at z = - 170 and z = 175. 

2. Series 3. Series 3 are [3] the square-free 

(7) D3(y) = 27y4 - 74y3 + 84y2 - 48y + 12 

with y -1 (mod 6). We did not similarly extend the earlier table of D3(y) by ex- 
amining each successive case; we confined ourselves to selected D3(y) that are either 
prime or, on the contrary, have many factors. Thus, 

(8) D = D3 (-235) - 83309629817 _1 (mod 4) 

is prime and the class group of Q((-D)1/2) is 

(9) C(9) X C(3) X C(3) X C(3) X C(724) 

with r = 4. The 40 inequivalent ideals (a, b + c(-D)1/2) satisfying a3 = b2 + c2D 
are listed in Table 2. 
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TABLE 2 

a3 = b2 + c2 83309629817 

a b c a b c 

6957 58985 2 140317 50197121 54 
7629 332839 2 150421 6140438 201 
7898 399282 2 176538 72976990 46 
9218 670842 2 181157 48022254 209 

11714 1128774 2 193773 28935833 278 
16258 1139390 6 194338 84241810 54 
45482 9682530 2 204369 2215897 320 
47381 7368846 25 222314 104819874 2 
47441 9243687 16 226409 101197899 128 
63029 15813261 2 232261 37007227 366 
78282 21894850 2 234981 6486427 394 
84033 20787385 44 237546 90539594 250 
86074 11438686 78 238474 9940366 402 
95317 27189566 39 249026 101174274 250 

100938 21638642 82 265301 51162438 439 
101194 29820986 42 265554 135345358 70 
107241 34813963 16 277818 49070002 478 
120889 41889061 12 293458 145485622 222 
137058 42877690 94 297309 155648414 157 
137673 35277317 128 302241 150498103 244 

Both (4) and (9) contain C(181). Presumably, this is a coincidence; if it had some 
causal significance that would certainly be of interest! Also puzzling are the pairs 
with c = cl or c = 2ci. See c = 78, 16, 12, 54, 128, 402, 250 in Table 2. 

The class group of Q((3D)112) is now C(3) X C(3) X C(3) X C(2). The elementary 
solutions of 

a3 = b2 c23D 

are 
2 

(lOa) a = 6y, b =54y - 72y + 36, c = 6, 

(lOb) a = 6y- 8, b =54y2 - 72y + 28, c = 6, 

for Series 3 but for y = -235 the ideal corresponding to (lOa) is now principal. So 
for D3(-235) there are two additional ideals of order 3 that are independent of 
(lOa, b) and each other. The ideal for (lOb) is equivalent to a prime ideal of norm 37 
and the two other generators can be taken as prime ideals of norm 23 and 71. We may 
therefore escalate our expectations and now expect cases with s = 4 and r = 5. 

On a point of terminology that frequently causes confusion: When we wrote that 
the first case of r = 2 is Q((- 3299)1/2), we meant that 3299 is the minimal absolute 
value of the discriminant. As is known, Q((-D)112) also has r = 2 for D = 974 
and 2437, but here the discriminant is -4D, not -D. Of course, "first case" and 
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"smallest" can equally well be defined to mean the smallest D, and some well-known 
books assert that Q((- 5)1/2) is the first case of nonunique factorization while others 
say that Q((- 15)1/2) is. By our choice, Q((-D6(169))112) is the "smaller" of our two 
cases of r = 4 even though (8) is smaller than (2b). That seems the preferred con- 
vention in this context; e.g., compare the values of a in Tables 1 and 2. 

Finally, since it may be of interest, we record 

(11) D = D3(449) = 1090678524545 = 5 - 23 - 83 - 193 * 592057. 

Here, Q((-D)112) has (only) r = 3 but the 2-Sylow subgroup has five factors in 
addition: 

C(9) X C(3) X C(3) X C(8) X C(2) X C(2) X C(2) X C(2) X C(73). 

3. The Class Field Towers. Golod and gafarevic proved [6] that the class 
field tower of an algebraic field k is infinite if its class group requires sufficiently 
many generators. Such k therefore cannot be imbedded in a larger algebraic field, 
of finite degree, having unique factorization. Specifically, from Roquette's formula 
[7, Eq. (1), p. 233], it follows that an imaginary quadratic field does have an infinite 
tower if its 3-rank (our r above) exceeds 3. So Q((-D)112) has such a tower for the 
D in (2b) and (8), the second case being especially noteworthy since its D is prime. 
The Q((-D)112) for (11) has an infinite tower because of its 2-rank = 5 (see Roquette, 
p. 234), but whether its 3-rank = 3 would also suffice is apparently not now known. 
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